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We have obtained an exact expression for the free energy of electrostatic interaction between two planar layers of orientable
dipoles imbedded in a structurable dielectric continuum described by a wave-vector-dependent dielectric response function. We
show that the orientable dipoles themselves can be described by a special type of non-local dielectric response. The interaction in
the case of non-local solvent coupling is much larger than in the case of ordinary, local dielectric.

1. Introduction

The accurate theoretical understanding of forces
between surfaces carrying dipoles or zwitterions, im-
mersed in an aqueous solution, is becoming pro-
gressively more important as the force measurements
between neutral phospholipid bilayers become more
accurate. These experiments reveal additional fea-
tures of the interactions, amounting to an anoma-
lously large attractive force, that have hitherto
escaped closer interest of the theorists [1]. A com-
mon feature of the experimental results on forces
acting between neutral bilayers is the existence of a
strong, non-electrostatic in origin, hydration force
that dominates the total interaction at separations
smaller than ~30 A [2]. It is becoming clear that at
least a part of this force should be attributed to the
structural, water-mediated interactions between the
surfaces, which can be described in the frame of the
non-local dielectric response theory [3].

Recently [4] the detailed molecular nature of the
interphase between the phospholipid bilayers and the
aqueous solution has also come under closer scru-
liny, revealing the contribution of additional ori-
entational degrees of freedom of the surface dipoles
to the interactions between electro-neutral bilayers.
Developing a perturbation formalism for the inter-

' On leave from J. Stefan Institute, p.p. 100, 61111 Ljubljana,
Yugoslavia.

action free energy, Attard and Mitchell [4] have been
able to establish the existence of an attractive force
operating between essentially two-dimensional, ori-
entable, surface dipole layers. The physical basis of
this force is the correlated electrostatic interaction
between fluctuating dipoles at the polar-apolar
interface.

In what follows an attempt will be made to incor-
porate the water structure explicitly into the model
of surface dipole correlation forces. Since the PN di-
pole in the case of PE and PC *' bilayers can fluc-
tuate essentially only in the plane of the bilayer
surface [5], the direction of the dipole will be as-
sumed to be perpendicular to the local normal of the
bilayer surface. In contrast with the former treat-
ment of the problem, it will be shown that the free
energy can be obtained directly, in a closed form,
without any need for a perturbation-type treatment.
Furthermore, a direct link between surface dipole
fluctuations and a special form of the non-local die-
lectric response will be established, allowing for a
straightforward treatment of the solvent structure ef-
fect on the same level. The solvent dielectric func-
tion will be approximated by the usual Lorentzian
expression in the specular reflection approximation.
Finally it will be argued that the combined effects of
water-structure-mediated surface dipole correlations

#1 The abbreviations are: PE, phosphatidylethanolamine; PC,
phosphatidylcholine.
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lead to the existence of an exponentially decaying at-
tractive force. The direct point of contact between
the usual van der Waals forces and the surface dipole
correlation forces, not noted by Attard and Mitchell
[4], will be commented upon.

2. Analysis

The geometry of our system is presented in fig. 1.
The two dipolar layers are a distance 2a apart and
the dipoles are allowed to fluctuate in the (x, y)
plane. We begin with the observation that if all the
local dipole charges are concentrated at the inner
(solution) side of the surface, say at z=z,, we can
write the Poisson equation in the form

div D=g,(x, y) 0(z—z), (1)

where d(z) is the Dirac delta function, D is the die-
lectric displacement vector, and o,(x, y) is the local
dipolar surface charge density. Due to the overall
electro-neutrality of the dipolar sheet we also have
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Fig. 1. The geometry of the model. The two dipolar sheets are
situated at zo= +4 and the two semi-infinite dielectrics occupy
the space |z|>a+4. The dielectric constant in the region
a<|z| <a+4is equal to €*. The central dielectric, spanning the
space between the two dipolar sheets, is described by a fixed die-

lectric constant € or by a wave-vector-dependent bulk dielectric
function e(k).
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with S being the total area. It can be shown qu
straightforwardly that, if p(x, y) is the local sudj
dipole density, i.e. surface polarization, we must lq

E
fpap(p) d’p= fp(p) d’p 4

i

g

with p being the two-dimensional radius
(p=(x,)). Eq. (1) can be therefore rewritten ip
alternative form
div D= —div,p(p) d(z—zp). i
Index 2 in the above expression denotes the tWo-
mensional divergence operator, i.e. pr/6x+ap,(§
The normal component of the dielectric dis; _‘
ment vector, D, therefore has a discontinuity at z=
equal in absolute value to div,p, or formally

Du(p, z=2p+€) =D, (p, z=z, —¢) 3

=—div,p(p).

This is the first equation that we shall make
use of in what follows. The second one is an z
of the macroscopic constitutive equation, conn
ing polarization in the medium and the impg
electric field. For small enough fields we can 3
that the value of surface polarization is propo
to the planar components of the electric field at,{
point:

P(p)=kE(p, z=2,),

where « is the surface susceptibility. We have
posed that the dipolar layer is isotropic in th
z=2, and only diagonal terms therefore ren ,
eq. (6). This approximation is, however, op
and can be easily generalized without quali
effecting our conclusions.

We proceed now to the calculation of the
ergy due to the local orientational fluctuations ¢
surface dipoles. Contrary to the previous work'
where the device of perturbation expansion was
we shall exploit the fact that the part of the .
ergy due to fluctuations can be obtained by a dj
coupling constant integration of the appropri
sponse function. This was shown quite rigoro.
the case of standard van der Waals forces by Mi
and Richmond [6]. Since here we are treating:
dipolar fluctuations classically, we can confine
selves to the zero-order frequency term or
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higher terms corresponding to the quantum
corrections.

For the sake of simplicity let us limit ourselves to
the case where the position of the orientable dipolar
layers coincides with dielectric discontinuity
(2=t a, 4=0in the notation of fig. 1), the aqueous
solution having the dielectric constant € and the two
semi-infinite regions ¢, respectively. We shall also
assume that the values of k on the two surfaces are
the same. Following closely the derivation of ref. [6]
we can obtain the free energy appropriate for our
system in the form

1
F=fo—koT [ £ 5 ( [ @o162(p, 2= —a)
5 a=x,y

+GE(p,z=+a)]), (7)

where k5T is the thermal energy, A the coupling con-
stant, Fy the part of the free energy not correspond-
ing to dipolar fluctuations, and G2(p, z) are the
components of the response functions of the two
surfaces

2

G2(p, 2) = —K(z) lim

P, 2). 8
lim o= 0(0.0',2). (8)

In the above equation ¢(p, p’, z) is the electrostatic
potential at p of a unit point dipole situated at p.
This potential is obtained by solving the Laplace
tquation with boundary condition (5) and the con-
stitutive relation (6), together with the continuity of
the potential at both interfaces. The calculation,
though tedious, is straightforward and we shall not

4§ repeat it here. Let us just quote the final result

l‘dzp Y [GR(p,z=—a)+G2(p, z= +a)]

s

oo

_ NP KAt 4~ exp(—4Qa)
o ) meeo Q*do 4% det ®)
, with the following abbreviations:
F=1ten/etkQldnee, (10)
and
det=1—(4-/4%)? exp(—4Qa). \( (11)

The integration over Q is here, as is usual for the
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planar electrostatic problems [7], a consequence of
the two-dimensional Fourier transforms in the (x,y)
plane. In deriving eq. (9) we have subtracted that
part of the Green function that does not depend on -
the intersurface separation.

What remains is now the final coupling constant
integration in eq. (7). This can be done in the usual
way by assuming that  is a linear function of 4 [6],
Le. k—»Ak and observing that

40K A" 4~ exp(—4Qa) ) ddet(4)
€€y A4 det - a

(12)

Eq. (7) can now be integrated explicitly and the free
energy of the surface dipole correlations can be ob-
tained in a particularly simple form

F_lkT
S 4n

X f QdQ {In[det(A=1)] —In[det(1=0)]}.
0

(13)

In the second term of the above expression we can
easily recognize the zero-order Lifshitz-van der
Waals term [8]. It is therefore appropriate to take F,
in eq. (7) as equal to this term so that the total free
energy of the system equals

§= %Tl QdQIn[1—(4-/4%)? exp(—4Qa)].

(14)

In this way the artificial repulsive component in the
free energy, due to the image interactions [4], is ex-
actly cancelled. Assuming now that the dielectric dis-
continuity at zo= *a is absent, we can derive from
€q. (12), by expanding it in terms of inverse powers
of 2a, the following limiting expression

F 3n(kkg T)?

s¥~ 8ky T€*(4mey)*(2a)*’ (1s)

which matches exactly with eq. (6) of ref, [4] if we
acknowledge the fact that the definition of the re-
sponse function used here is slightly different from
the one used in ref. [4]. In fact the transformation
between the two notations is G.(0)=G,,(0) =xk;T,
G..(0)=0. We shall not pursue the task of showing
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that even in the case of isotropic fluctuations not
limited to the (x, y) plane, the exact results obtained
by our method reduce in the lowest order to those
obtained in ref. [4] provided that the zero-order van
der Waals term is added to the expression derived by
Attard and Mitchell. What we would like to point
out here, however, is that the problem of correlation
forces between orientable surface dipole layers can
be cast into the language of non-local dielectric re-
sponse formalism. To show this we shall assume that
the dipolar layers (fig. 1) at zy= g are an integral
part of the dielectric confined between |z| <a+4and
we shall try to obtain the constitutive relation for this
extended dielectric.

Since even the extended dielectric is isotropic in
the (x, y) plane we can certainly write the consti-
tutive relation in the form

tat+4a

LZ((2’2)==60

—a—4

€x(Q,2,2') E(Q, z') dz',

(16)

where we have introduced the two-dimensional
Fourier components

eik(Q’ Z, Z,)

[ @pento—p', 2, 2) exvliQ(o—-p)]
(17)

of the dielectric function and analogously for the
electric field and dielectric displacement vector. It
can be easily shown that egs. (5) and (6) can be re-
produced if the following form for the dielectric re-
sponse function of the extended dielectric is assumed:

elk(Q’ z, Z') =e§ik6(z_z’)
+ k(90 +0,0,,)0(z+a) 6(z' +a)
+K(0x0ix +0,,04,)0(z—a) d(z' —a). (18)

The first term in the above equation clearly corre-
sponds to the usual local dielectric response of the
medium. The other two terms, of a particular non-
local form, represent the contribution of the two ori-
entable dipolar sheets at z,= 4 to the total dielec-
tric response of the extended dielectric.

We can therefore reinterpret eq. (14) as the free
energy of the usual van der Waals interactions with
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the provision that the central dielectric, spannin
whole region between the dielectric discontin ;

energy could therefore be obtained by the usuat;
pler approach, viz. by calculating the secular »
minant corresponding to the dielectric response
and then using the Ninham-Parsegian-Wi
theorem to obtain the zero- (frequency) o
energy.
If the dielectric between the two sheets beari
entable dipoles is furthermore characterized é
non-local dielectric response, the generalizatiog
egs. (18) and (14) is now really straightforward,
us limit ourselves to the case where the bulk
tric function of the non-local structurable m "
€(k), can be sufficiently well approximated by &
usual Lorentzian expression [10]

€—€y

e(k)= MO

with k denoting the three-dimensional wave
and ¢, the infinite frequency dielectric con
the medium. We shall use the specular reflecti
proximation [11] to connect the dielectric res
of the bulk dielectric with the dielectric resp
the same material intercalated between the t
faces at z=taq.
To obtain the free energy of the interaction if
case we follow closely the method of ref. [11]
we have shown above that the dipolar co Y
force is nothing but a generalized version of th
der Waals force. In the region |z| <a the diclot
response is therefore characterized by eq. ( 18)’«
vided that the term €d,5(z—z') is substituted b
appropriate specular reflection model exp s
the bulk response function (19). The regions
tween z= * g4 and the two dielectric discontiny
of thickness 4 have a local dielectric response ¢hil
acterized by €*. Finally the two semi-infinite
are described by the dielectric constant e,
tails of the somewhat lengthy but new ,
straightforward derivation will be published
where. Here we merely quote the final expressx
the free energy

F kg T Det B
S “J.Q dQln (l—exp[—-4w(a+A)])’,
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where we used the following definitions
wi=0+(€o/€)E72, (21a)
£=Q?HE7, (21b)
and abbreviations
Det={1+a;, exp[ —2(u+Q)a]}?
- [aor exp(—2ua)+a,o exp(—2Qa)]?, (22a)
€x +(=1)T/le+(ex' —e=")(=1)QI'/u

= €x'+T/e+(ex' —€=")QI /u ’
(22b)

I=€*0"/€,0" +kQl4neqye,,, (22¢)

.. 1—€,/€*

(f:l_WCXp(—ZQA). (22d)

The integral (20) reduces to the usual zero-order
Lifshitz-van der Waals term at large a. In the op-
posite limit we have been unable to find any simple
analytic approximation and had to analyze €q. (20)
numerically.

3. Results

We investigated the dependence of attractive pres-
sure, defined as the derivative of eq. (20) with re-
spect to 2a. We have used the model system defined
on fig. 1 with 4=3 A, corresponding to a layer of
water molecules behind the orientable dipole sheet.
The dielectric constant of the two semi-infinite re-
gions was assumed to be €, =2, in correspondence
with the dielectric data on the hydrocarbon core of
the phospholipid layer [12]. The dielectric constant
of the two thin aqueous layers was taken as e*=¢_,
since presumably the immobilized water molecules
¢an respond only with the high-frequency dielectric
constant, stemming essentially from the electron re-
laxation and being close to €.=35 for water. The
static, macroscopic dielectric constant of water, € in
€q. (19), was taken equal to €=80 and the correla-
tion length =3 A. The value of x was assumed to
be equal to the ideal gas expression for dipoles with
surface density 1/75 A’ and dipole moment
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Log (pressure), [N,,2]
o

2a + A) Al

Fig. 2. The logarithm of the attractive pressure as a function of
the spacing between the two semi-infinite dielectric regions. The
dotted curve corresponds to the standard zero-order
Lifshitz-van der Waals result [8] for the interaction of two semi-
infinite media of dielectric constant €y Interacting across a re-
gion with dielectric constant e. The dashed curve corresponds to
the derivative of eq. (20) with £=0 and is an accurated version
of the Attard-Mitchell result. The full line is the attractive pres-
sure derived from eq. (20). The value of Kk/4ne, was taken as
18.5 nm. The insert presents the apparent Hamaker coefficient
(eq. (23)) for the same three cases. The arrow points to the value
of the Hamaker coefficient at infinite intersurface spacing. In the
case of standard zero-order Lifshitz-van der Waals result the
Hamaker coefficient is not a constant, since the plot is made
against 2a and not 2(a+4).

#=8.0X10"* Asm*®, ie. k/4ne,=18.5 nm.

Fig. 2 presents the results of numerical evaluation
of the pressure. We have compared the standard,
zero-order Lifshitz—van der Waals term with no con-
tribution from the dipole correlations (dotted line),
the derivative of eq. (20) with ¢=0, which repre-
sents an improved version of the Attard-Mitchell [4]
result (dashed line), and our result (full line) for the
dielectrically non-local central medium. We can see
that the dipolar correlations clearly change the be-
haviour of the pressure at small separations, as was
reported in ref. [4], and that the effect of solvent-
structure-mediated dipolar correlations is more
drastic, amounting to more than an order of mag-

#2 The ideal value of the susceptibility of the two-dimensional
dipolar gas is u*/ks TS, where u denotes the value of the dipole
moment.
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nitude even at moderate separations. The changes in
the behaviour of pressure as we go from unstruc-
tured to structurable dielectric can be understood by
analyzing eq. (15). The magnitude of the correlation
effect is evidently proportional to €~2. If we have a
structurable dielectric, e.g. water, its dielectric con-
stant will change from e€=80 at moderate separa-
tions to €.x=¢€,,=5 at small separations, enhancing
thus the magnitude of the correlation effect by two
orders of magnitude. Also the correlation effect in
the structurable case is not limited only to small in-
tersurface separations but extends furtherout, being
appreciable even at separations equal to several cor-
relation lengths.

To explore additional features of solvent-struc-
ture-mediated dipolar correlation forces we have
plotted the apparent Hamaker coefficient defined as

12n(2a)> F

Hoo=—0 75

(23)
as a function of 2a in the insert of fig. 2. At large sep-
arations H,,, approaches the value specified by the
arrow. The dotted curve again corresponds to the
standard, i.e. zero-order, Lifshitz-van der Waals
term, corrected by the fact that the plot is done
against 2a and not 2(a+4). The full and the dashed
line represent the same cases as before. What is par-
ticularly conspicuous (and can be made even more
evident by plotting log(#,,,)) from the insert is that
in the case of non-local, solvent-mediated correla-
tions the apparent Hamaker coefficient in the regime
a< ¢ is an exponential function of 2a, with the decay
length somewhat smaller than & (~2 A for £=3 A)
and weakly dependent on the value of k. The surface
properties, embedded in the value of  and the prop-
erties of bulk solvent (correlation length &) are
therefore not separable as is the case in the hydration
force theory [3]. The solvent-mediated dipolar cor-
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relation forces intertwine both characteristics ¢
system in such a way that surface properties
ence not only the magnitude but also the decay
of the forces. We are currently trying to interp:

results of the force measurements in the light of;
theoretical developments presented here.
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